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Grassmann–Cayley algebra for modelling
systems of cameras and the algebraic equations

of the manifold of trifocal tensors

By Olivier Faugeras and T h é odore Papadopoulo

INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis Cedex, France

We show how to use the Grassmann–Cayley algebra to model systems of one, two
and three cameras. We start with a brief introduction of the Grassmann–Cayley or
double algebra and proceed to demonstrate its use for modelling systems of cameras.
In the case of three cameras, we give a new interpretation of the trifocal tensors and
study in detail some of the constraints that they satisfy. In particular we prove that
simple subsets of those constraints characterize the trifocal tensors, in other words,
we give the algebraic equations of the manifold of trifocal tensors.

Keywords: multiple-view geometry; trifocal tensor; Grassmann–Cayley algebra;
fundamental matrix; double algebra

1. Introduction

This article deals with the problem of representing the geometry of several (up to
three) pinhole cameras. The idea that we put forward is that this can be done
elegantly and conveniently using the formalism of the Grassmann–Cayley algebra.
This formalism has already been presented to the computer vision community in
several publications (e.g. Carlsson 1994; Faugeras & Mourrain 1995a), but no effort
has yet been made to systematically explore its use for representing the geometry of
systems of cameras.

The thread that is followed here is to study the relations between the three-
dimensional (3D) world and its images obtained from one, two or three cameras as
well as, when possible, the relations between those images, with the idea of having
an algebraic formalism that allows us to compute and estimate things while keeping
the geometric intuition which, we think, is important. The Grassmann–Cayley, or
double algebra, with its two operators ‘join’ and ‘meet’ that correspond to the ge-
ometric operations of summing and intersecting vector spaces or projective spaces,
was precisely invented to fill this need.

After a very brief introduction to the double algebra (more detailed contemporary
discussions can be found, for example, in Doubilet et al . (1974) and Barnabei et
al . (1985)), we apply the algebraic–geometric tools to the description of one pinhole
camera in order to introduce such notions as the optical centre, the projection planes
and the projection rays which appear later. This introduction is particularly dense
and only meant to make the paper more or less self-contained.

We then move on to the case of two cameras and give a simple account of the
fundamental matrix (Longuet-Higgins 1981; Faugeras 1992; Carlsson 1994; Luong &
Faugeras 1995) which sheds some new light on its structure.
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1124 O. Faugeras and T. Papadopoulo

The next case we study is the case of three cameras. We present a new way of
deriving the trifocal tensors which appear in several places in the literature. It has
been shown originally by Shashua (1994) that the coordinates of three corresponding
points in three views satisfy a set of algebraic relations of degree 3 called the trilinear
relations. It was later pointed out by Hartley (1994) that those trilinear relations were
in fact arising from a tensor that governed the correspondences of lines between
three views and which he called the trifocal tensor. Hartley also correctly pointed
out that this tensor had been used, if not formally identified, by researchers working
on the problem of the estimation of motion and structure from line correspondences
(Spetsakis & Aloimonos 1990b). Given three views, there exist three such tensors
and we introduce them through the double algebra.

Each tensor seems to depend upon 26 parameters (27 up to scale); these 26 pa-
rameters are not independent since the number of degrees of freedom of three views
has been shown to be equal to 18 in the projective framework (33 parameters for
the 3 perspective projection matrices minus 15 for an unknown projective transfor-
mation) (Luong & Viéville 1994). Therefore the trifocal tensor can depend upon at
most 18 independent parameters, and its 27 components must satisfy several alge-
braic constraints, some of which have been elucidated (Shashua & Werman 1995;
Avidan & Shashua 1996). We have given a slightly more complete account of those
constraints in Faugeras & Papadopoulo (1998), used them to parametrize the tensors
minimally (i.e. with 18 parameters) and to design an algorithm for their estimation
given line correspondences. In this paper we explore those constraints in great detail
and prove that two particular simple subsets are sufficient for a tensor to arise from
three cameras (theorems 5.14 and 5.15).

We denote vectors and matrices with bold letters, e.g. x and P . The determinant
of a square matrix A is noted det(A). When the matrix is defined by a set of vectors,
e.g. A = [a1 a2 a3] we use |a1 a2 a3|. The canonical basis of R3 is noted ei, where
i = 1, 2, 3. When dealing with projective spaces, such as P2 and P3, we occasionally
make the distinction between a projective point, e.g. x and one of its coordinate
vectors, x. The dual of Pn, the set of projective points is the set of projective lines
(n = 2) or the set of projective planes (n = 3); it is denoted by P∗n. Let a, b, c, d be
four vectors of R3. In § 5 e we will use Cramer’s relation (see Faugeras & Mourrain
1995b):

|bcd|a− |acd|b+ |abd|c− |abc|d = 0.

2. Grassmann–Cayley algebra

Let E be a vector space of dimension 4 on the field R. The corresponding three-
dimensional projective space is noted P3. We consider ordered sets of k, k 6 4
vectors of E. Such ordered sets are called k-sequences. We first define an equivalence
relation over the set of k-sequences as follows. Given two k-sequences a1, · · · ,ak
and b1, · · · , bk, we say that they are equivalent when, for every choice of vectors
xk+1, · · · ,xn, we have

|a1 · · ·akxk+1 · · ·x4| = |b1 · · · bkxk+1 · · ·x4|. (2.1)
That this defines an equivalence relation is immediate. An equivalence class under
this relation is called an extensor of step k and is written as

a1Oa2O · · ·Oak. (2.2)
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Grassmann–Cayley algebra for modelling cameras 1125

The product operator O is called the join for reasons related to its geometric in-
terpretation. Let us denote by Gk(E), 1 6 k 6 4 the vector set generated by all
extensors of step k, i.e. by all linear combinations of terms like (2.2). It is clear from
the definition that G1(E) = E. To be complete one defines G0(E) to be equal to the
field R. The dimension of Gk(E) is (

4
k

)
.

The join operator corresponds to the union of projective subspaces of P (E). The
exterior algebra is the direct sum of the vector spaces Gk, k = 0, . . . , 4 with the join
operator. For example, a point of P3 is represented by a vector of E, its coordinate
vector, or equivalently by a point of G1(E). The join M1OM2 of two distinct points
M1 and M2 is the line (M1,M2). Similarly, the join M1OM2OM3 of three distinct
points M1, M2, M3 is the plane (M1,M2,M3). It is an extensor of step 3. The set of
extensors of step 3 represents the sets of planes of P3.

Let us study in more detail the case of the lines of P3. Lines are extensors of
step 2 and are represented by six-dimensional vectors of G2(E) with coordinates
(Lij , 1 6 i < j 6 4) which satisfy the well-known Plücker relation:

L12L34 − L13L24 + L14L23 = 0. (2.3)
This equation allows us to define an inner product between two elements L and L′
of G2(R4):

[L | L′] = L12L
′
34 + L′12L34 − L13L

′
24 − L′13L24 + L14L

′
23 + L′14L23. (2.4)

We will use this inner product when we describe the imaging of 3D lines by a camera
in § 4. Not all elements of G2(E) are extensors of step 2 and it is known that:

Proposition 2.1. An element L of G2(E) represents a line if and only if [L | L]
is equal to 0.

To continue our program to define algebraic operations which can be interpreted
as geometric operations on the projective subspaces of P (E), we define a second
operator, called the meet, and noted M, on the exterior algebra G(E). This operator
corresponds to the geometric operation of intersection of projective subspaces. IfA is
an extensor of step k and B is an extensor of step h, k+h > 4, the meet AMB of A
andB is an extensor of step k+h−4. For example, ifΠ1 andΠ2 are non-proportional
extensors of step 3, i.e. representing two planes, their meet Π1MΠ2 is an extensor
of step 2, representing the line of intersection of the two planes. Similarly, if Π is
an extensor of step 3 representing a plane and L an extensor of step 2 representing
a line, the meet Π ML is either 0 if L is contained in Π or an extensor of step 1
representing the point of intersection of L and Π. Finally, if Π is an extensor of step
3, a plane, and M an extensor of step 1, a point, the meet Π MM is an extensor of
step 0, a real number, which turns out to be equal to ΠTM , the scalar product of
the usual vector representation of the plane Π with a coordinate vector of the point
M which we note 〈Π,M〉. The connection between a plane as a vector in G3(E)
and the usual vector representation Π is through the Hodge operator and can be
found, for example, in Barnabei et al . (1985).

We also define a special element of G4(E), called the integral. Let {a1, · · · ,a4}
be a basis of E such that |a1 · · ·a4| = 1 (the 4× 4 determinant), a unimodal basis.
The extensor I = a1O · · ·Oa4 is called the integral. In § 4 we will need the following
property of the integral:
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1126 O. Faugeras and T. Papadopoulo

Proposition 2.2. Let A and B be two extensors such that step(A)+step(B) = 4.
Then

AOB = (AMB)O I = |AB|I.
The inner product (2.4) has an interesting interpretation in terms of the join

LOL′, an extensor of step 4:

Proposition 2.3. We have the following relation:

LOL′ = [L | L′]e1O e2O e3O e4, (2.5)

where e1, . . . ,e4 is the canonical basis of R4.

In § 3, we will use the following results on lines:

Proposition 2.4. Let L and L′ be two lines. If the two lines are represented as
the joins of two points A and B and A′ and B′, respectively, then

[L | L′] = |ABA′B′|.
If the two lines are represented as the meets of two planes P and Q and P ′ and Q′,
then

[L | L′] = |PQP ′Q′|. (2.6)

If one line is represented as the meet of two planes P and Q and the other as the
join of two points A′ and B′, then

[L | L′] = 〈P |A′〉〈Q|B′〉 − 〈Q|A′〉〈P |B′〉. (2.7)

We will also use in § 4 the following result:

Proposition 2.5. Let L and L′ be two lines. The inner product [L | L′] is equal
to 0 if and only if the two lines are coplanar.

3. Geometry of one view

We consider that a camera can be modelled accurately as a pinhole and performs a
perspective projection. If we consider two arbitrary systems of projective coordinates,
for the image and the object space, the relationship between 2D pixels and 3D points
can be represented as a linear projective operation which maps points of P3 to points
of P2. This operation can be described by a 3 × 4 matrix P , called the perspective
projection matrix of the camera:

m =

xy
z

 ' P

X
Y
Z
T

 = PM . (3.1)

This matrix is of rank 3. Its nullspace is therefore of dimension 1, corresponding
to a unique point of P3, the optical centre C of the camera. We give a geometric
interpretation of the rows of the projection matrix. We use the notation,

PT = [ΓT ΛT ΘT], (3.2)
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Grassmann–Cayley algebra for modelling cameras 1127

where Γ , Λ, and Θ are the row vectors of P . Each of these vectors represents a
plane in 3D. These three planes are called the projection planes of the camera. The
projection equation (3.1) can be rewritten as

x : y : z = 〈Γ ,M〉 : 〈Λ,M〉 : 〈Θ,M〉,
where, for example, 〈Γ ,M〉 is the dot product of the plane represented by Γ with
the point represented by M . This relation is equivalent to the three scalar equations,
of which two are independent:

x〈Λ,M〉 − y〈Γ ,M〉 = 0,
y〈Θ,M〉 − z〈Λ,M〉 = 0,
z〈Λ,M〉 − x〈Θ,M〉 = 0.

 (3.3)

The planes of equation 〈Γ ,M〉 = 0, 〈Λ,M〉 = 0 and 〈Θ,M〉 = 0 are mapped to
the image lines of equations x = 0, y = 0, and z = 0, respectively. We have the
proposition:

Proposition 3.1. The three projection planes of a perspective camera intersect
the retinal plane along the three lines going through the first three points of the
standard projective basis.

The optical centre is the unique point C which satisfies PC = 0. Therefore
this point is the intersection of the three planes represented by Γ , Λ, Θ. In the
Grassmann–Cayley formalism, it is represented by the meet of those three planes
Γ MΛMΘ. This is illustrated in figure 1. Because of the definition of the meet op-
erator, the projective coordinates of C are the four 3× 3 minors of matrix P :

Proposition 3.2. The optical centre C of the camera is the meet Γ MΛMΘ of
the three projection planes.

The three projection planes intersect along the three lines Γ MΛ,ΛMΘ andΘMΓ
called the projection rays. These three lines meet at the optical centre C and intersect
the retinal plane at the first three points e1, e2 and e3 of the standard projective
basis. Given a pixel m, its optical ray (C,m) can be expressed very simply as a linear
combination of the three projection rays:

Proposition 3.3. The optical ray Lm of the pixel m of projective coordinates
(x, y, z) is given by

Lm = xΛMΘ + yΘMΓ + zΓ MΛ. (3.4)

Proof . Let consider the plane xΛ − yΓ . This plane contains the optical centre
Γ MΛMΘ since both Λ and Θ do. Moreover, it also contains the point M . To see
this, let us take the dot product:

〈xΛ− yΓ ,M〉 = x〈Λ,M〉 − y〈Γ ,M〉,
but since x : y = 〈Γ ,M〉 : 〈Λ,M〉, this expression is equal to 0. Therefore, the plane
xΛ–yΓ contains the optical ray (C,m). Similarly, the planes zΓ –xΘ and yΘ–zΛ
also contain the optical ray (C,m), which can therefore be found as the intersection
of any of these two planes. Taking for instance the first two planes that we considered,
we obtain

(xΛ− yΓ )M(zΓ − xΘ) = −x(xΛMΘ + yΘMΓ + zΓ MΛ).
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1128 O. Faugeras and T. Papadopoulo

Figure 1. Geometrical interpretation of the three rows of the projection matrix as planes. The
three projection planes Γ , Λ andΘ are projected into the axes of the retinal coordinate system.
The three projection rays intersect the retinal plane at the first three points of the retinal
projective basis. The three projection planes meet at the optical centre.

The scale factor x is not significant, and if it is zero, another choice of two planes
can be made for the calculation. We conclude that the optical ray Lm = (C,m) is
represented by the line xΛMΘ+ yΘMΓ + zΓ MΛ (see proposition 3.6) for another
interesting interpretation of this formula). �

We also have an interesting interpretation of matrix PT which we give in the
following proposition:

Proposition 3.4. The transpose PT of the perspective projection matrix defines
a mapping from the set of lines of the retinal plane to the set of planes going through
the optical centre. This mapping associates to the line l, represented by the vector
l = [x, y, z]T, the plane PTl = xΓ + yΛ+ zΘ.

Proof . The fact that PT maps planar lines to planes is a consequence of duality.
The plane xΓ + yΛ + zΘ contains the optical centre since it is contained by each
projection plane. �

Having discussed the imaging of points, let us tackle the imaging of lines, which
plays a central role in subsequent parts of this paper. Given two 3D points M1 and
M2, the line L ≡ M1OM2 is an element of G3(R4) represented by its Plücker
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Grassmann–Cayley algebra for modelling cameras 1129

coordinates. The image l of that line through a camera defined by the perspective
projection matrix P is represented by the 3× 1 vector:

l = PM1 ×PM2

= [〈Λ,M1〉〈Θ,M2〉 − 〈Θ,M2〉〈Λ,M1〉,
〈Θ,M1〉〈Γ ,M2〉 − 〈Γ ,M2〉〈Θ,M1〉, 〈Γ ,M1〉〈Λ,M2〉 − 〈Λ,M2〉〈Γ ,M1〉]T.

Equation (2.7) of proposition 2.4 allows us to recognize the inner products of the
projection rays of the camera with the line L:

l ' [[ΛMΘ | L], [ΘMΓ | L], [Γ MΛ|L]]T. (3.5)

We can rewrite this in matrix form,

l ' P̃L, (3.6)

where P̃ is the following 3× 6 matrix:ΛMΘΘMΓ
Γ MΛ

 .
The matrix P̃ plays for 3D lines the same role that the matrix P plays for 3D points.
Equation (3.6) is thus equivalent to

l1 : l2 : l3 = [ΛMΘ | L] : [ΘMΓ | L] : [Γ MΛ|L].

We have the following proposition:

Proposition 3.5. The pinhole camera also defines a mapping from the set of lines
of P3 to the set of lines of P2. This mapping is an application from the projective
space P (G2(R4)) (the set of 3D lines) to the projective space P (G2(R3)) (the set of
2D lines). It is represented by a 6 × 4 matrix, noted P̃ whose row vectors are the
Plücker coordinates of the projection rays of the camera:

P̃ =

ΛMΘΘMΓ
Γ MΛ

 . (3.7)

The image l of a 3D line L is given by

l1 : l2 : l3 = [ΛMΘ|L] : [ΘMΓ |L] : [Γ MΛ|L].

The nullspace of this mapping contains the set of lines going through the optical
centre of the camera.

Proof . We have already proved the first part. Regarding the nullspace, if L is a
3D line such that P̃L = 0, then L intersect all three projection rays of the camera
and hence goes through the optical centre. �

The dual interpretation is also of interest:

Proposition 3.6. The 3× 6 matrix P̃T represents a mapping from P2 to the set
of 3D lines, subset of P (G2(R4)), which associates to each pixel m its optical ray
Lm.
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Proof . Since P̃ represents a linear mapping fromG2(R4) toG2(R3), P̃T represents
a linear mapping from the dual G2(R3)∗ of G2(R3) which we can identify to G1(R3),
to the dual G2(R4)∗ which we can identify to G2(R4) (see, for example, Barnabei et
al . (1985) for the definition of the Hodge operator and duality). Hence it corresponds
to a morphism from P2 to P (G2(R4)). If the pixel m has projective coordinates x, y
and z, we have:

P̃Tm ' xΛMΘ + yΘMΓ + zΓ MΛ
and we recognize the right-hand side to be a representation of the optical ray Lm. �

(a) Affine digression

In the affine framework we can give an interesting interpretation of the third
projection plane of the perspective projection matrix:

Proposition 3.7. The third projection planeΘ of the perspective projection ma-
trix P is the focal plane of the camera.

Proof . The points of the plane of equation 〈Θ,M̃〉 = 0 are mapped to the points
in the retinal plane such that z = 0. This is the equation of the line at infinity in
the retinal plane. The plane represented by Θ is therefore the set of points in 3D
space which do not project at finite distance in the retinal plane. These points form
the focal plane, which is the plane containing the optical centre, and parallel to the
retinal plane. �

When the focal plane is the plane at infinity, i.e. Θ ' e4, the camera is called an
affine camera and performs a parallel projection. Note that this class of cameras is
important in applications, including the orthographic, weak perspective, and scaled
orthographic projections.

4. Geometry of two views

In the case of two cameras, it is well-known that the geometry of correspondences
between the two views can be described compactly by the fundamental matrix, noted
F12, which associates to each pixel m1 of the first view its epipolar line, noted lm1

in the second image:
lm1 ' F12m1.

Similarly, F21 = FT
12 associates to a pixel m2 of the second view its epipolar line lm2

in the first view.
The matrix F12 (resp. F21) is of rank 2, the point in its null-space is the epipole

e1,2 (resp. the epipole e2,1):

F12e1,2 = F21e2,1 = 0.

There is a very simple and natural way of deriving the fundamental matrix in the
Grassmann–Cayley formalism. We use the simple idea that two pixels m and m′ are
in correspondence if and only if their optical rays (C,m) and (C ′,m′) intersect. We
then write down this condition using proposition 2.5 and obtain the fundamental
matrix using the properties of the double algebra.

We will denote the rows of P by Γ , Λ, Θ, and the rows of P ′ by Γ ′, Λ′, Θ′. We
have the following proposition:
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Grassmann–Cayley algebra for modelling cameras 1131

Proposition 4.1. The expression of the fundamental matrix F as a function of
the row vectors of the matrices P and P ′ is

F =

|ΛΘΛ′Θ′| |ΘΓΛ′Θ′| |ΓΛΛ′Θ′||ΛΘΘ′Γ ′| |ΘΓΘ′Γ ′| |ΓΛΘ′Γ ′|
|ΛΘΓ ′Λ′| |ΘΓΓ ′Λ′| |ΓΛΓ ′Λ′|

 . (4.1)

Proof . Let m and m′ be two pixels. They are in correspondence if and only if their
optical rays (C,m) = Lm and (C ′,m′) = L′m′ intersect. According to proposition 2.5,
this is equivalent to the fact that the inner product [Lm | L′m′ ] of the two optical
rays is equal to 0. Let us translate this algebraically. Let (x, y, z) (resp. (x′, y′, z′))
be the coordinates of m (resp. m′). Using proposition 3.6, we write

Lm ' P̃Tm = xΛMΘ + yΘMΓ + zΓ MΛ
and

L′m′ ' P̃
′T
m′ = x′Λ′MΘ′ + y′Θ′MΓ ′ + z′Γ ′MΛ′.

We now want to compute [Lm | L′m′ ]. In order to do this, we use proposition 2.3 and
compute LmOL′m′ :
LmOL′m′ ' (xΛMΘ + yΘMΓ + zΓ MΛ)O(x′Λ′MΘ′ + y′Θ′MΓ ′ + z′Γ ′MΛ′).

Using the linearity of the join operator, we obtain an expression which is bilinear in
the coordinates of m and m′ and contains terms such as

(ΛMΘ)O(Λ′MΘ′).
Since ΛMΘ and Λ′MΘ′ are extensors of step 2, we can apply proposition 2.2 and
write

(ΛMΘ)O(Λ′MΘ′) = |ΛΘΛ′Θ′|I,
where I is the integral defined in § 2. We have similar expressions for all terms in
LmOL′m′ . We thus obtain

LmOL′m′ = (m′TFm)I,

where the 3×3 matrix F is defined by equation (4.1). Since LmOL′m′ = [Lm | L′m′ ]I,
the conclusion follows. �

Let us determine the epipoles in this formalism. We have the following simple
proposition:

Proposition 4.2. The expression of the epipoles e and e′ as a function of the row
vectors of the matrices P and P ′ is

e '
|ΓΓ ′Λ′Θ′||ΛΓ ′Λ′Θ′|
|ΘΓ ′Λ′Θ′|

 , e′ '
|Γ ′ΓΛΘ||Λ′ΓΛΘ|
|Θ′ΓΛΘ|

 .
Proof . We have seen previously that e (resp. e′) is the image of C ′ (resp. C) by the

first (resp. the second) camera. According to proposition 3.2, these optical centres
are represented by the vectors of G1(R4) Γ MΛMΘ and Γ ′MΛ′MΘ′. Therefore we
have, for example, that the first coordinate of e is

〈Γ ,Γ ′MΛ′MΘ′〉,
which is equal to (Γ ′MΛ′MΘ′)MΓ = −|ΓΓ ′Λ′Θ′|. �
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Figure 2. The trifocal geometry.

(a) Another affine digression

Let us now assume that the two cameras are affine, i.e. Θ ' Θ′ ' e4 (in fact it
is sufficient that Θ ' Θ′). Because of the standard properties of determinants, it is
clear from equation (4.1) that the fundamental matrix takes a special form:

Proposition 4.3. The fundamental matrix of two affine cameras has the form:

F =

 0 0 |ΓΛΛ′Θ′|
0 0 |ΓΛΘ′Γ ′|

|ΛΘΓ ′Λ′| |ΘΓΓ ′Λ′| |ΓΛΓ ′Λ′|

 . (4.2)

5. Geometry of three views

(a) Trifocal geometry from binocular geometry

When we add one more view, the geometry becomes more intricate; see figure 2.
Note that we assume that the three optical centres C1, C2, C3 are different, and
call this condition the general viewpoint assumption. When they are not aligned
they define a plane, called the trifocal plane, which intersects the three image planes
along the trifocal lines t1, t2, t3 which contain the epipoles ei,j , i 6= j, i = 1, . . . , 3,
j = 1, . . . , 3. The three fundamental matrices F12, F23 and F31 are not independent
since they must satisfy the three constraints:

eT
2,3F12e1,3 = eT

3,1F23e2,1 = eT
1,2F31e3,2 = 0, (5.1)

which arise naturally from the trifocal plane: for example, the epipolar line in view 2
of the epipole e1,3 is represented by F12e1,3 and is the image in view 2 of the optical
ray (C1, e1,3) which is identical to the line (C1, C3). This image is the trifocal line t2
which goes through e2,3 (see figure 2), hence the first equation in (5.1).

This has an important impact on the way we have to estimate the fundamental
matrices when three views are available: very efficient and robust algorithms are
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now available to estimate the fundamental matrix between two views from point
correspondences (Zhang et al . 1995; Torr & Zissermann 1997; Hartley 1995). The
constraints (5.1) mean that these algorithms cannot be used blindly to estimate the
three fundamental matrices independently because the resulting matrices will not
satisfy the constraints causing errors in further processes such as prediction.

Indeed, one of the important uses of the fundamental matrices in trifocal geome-
try is the fact that they in general allow to predict from two correspondences, say
(m1,m2) where the point m3 should be in the third image: it is simply at the in-
tersection of the two epipolar lines represented by F13m1 and F23m2, when this
intersection is well defined.

It is not well defined in two cases:

1. In the general case where the three optical centres are not aligned, when the 3D
points lie in the trifocal plane (the plane defined by the three optical centres),
the prediction with the fundamental matrices fails because, in the previous
example both epipolar lines are equal to the trifocal line t3.

2. In the special case where the three optical centres are aligned, the predic-
tion with the fundamental matrices fails always since, for example, F13m1 '
F23m2, for all corresponding pixels m1 and m2 in views 1 and 2, i.e. such that
mT

2 F12m1 = 0.

For those two reasons, as well as for the estimation problem mentioned previously,
it is interesting to characterize the geometry of three views by another entity, the
trifocal tensor.

The trifocal tensor is really meant for describing line correspondences and, as such,
has been well-known under disguise in the part of the computer vision community
dealing with the problem of structure from motion (Spetsakis & Aloimonos 1990a, b;
Weng et al . 1992) before it was formally identified by Hartley (1994) and Shashua
(1995).

(b) The trifocal tensors

Let us consider three views, with projection matrices Pn, n = 1, 2, 3, a 3D line L
with images ln. Given two images lj and lk of L, L can be defined as the intersection
(the meet) of the two planes PT

j lj and PT
k lk:

L ' PT
j lj MPT

k lk.

The vector L is the 6× 1 vector of the Plücker coordinates of the line L.
Let us write the right-hand side of this equation explicitly in terms of the row

vectors of the matrices Pj and Pk and the coordinates of lj and lk:

L ' (l1jΓj + l2jΛj + l3jΘj)M(l1kΓk + l2kΛk + l3kΘk).

By expanding the meet operator in the previous equation, it can be rewritten in the
following less compact form, with the advantage of making the dependency on the
projection planes of the matrices Pj and Pk explicit:

L ' lTj

Γj MΓk Γj MΛk Γj MΘk

Λj MΓk Λj MΛk Λj MΘk

Θj MΛk Θj MΛk Θj MΘk

 lk. (5.2)
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Figure 3. The line li is the image by camera i of the 3D line L intersection of the planes
defined by the optical centres of the cameras j and k and the lines lj and lk, respectively.

This equation should be interpreted as giving the Plücker coordinates of L as a
linear combination of the lines defined by the meets of the projection planes of the
perspective matrices Pj and Pk, the coefficients being the products of the projective
coordinates of the lines lj and lk.

The image li of L is therefore obtained by applying the matrix P̃i (defined in § 3)
to the Plücker coordinates of L, hence the equation:

li ' P̃i(PT
j lj MPT

k lk), (5.3)

which is valid for i 6= j 6= k. Note that if we exchange view j and view k, we just
change the sign of li and therefore we do not change li. A geometric interpretation
of this is shown in figure 3. For convenience, we rewrite equation (5.3) in a more
compact form:

li ' T i(lj , lk). (5.4)

This expression can be also put in a slightly less compact form with the advantage
of making the dependency on the projection planes of the matrices Pn, n = 1, 2, 3
explicit:

li '
[
lTj G

1
i lk lTj G

2
i lk lTj G

3
i lk
]T
. (5.5)

This is, in the projective framework, the exact analogue of the equation used in the
work of Spetsakis & Aloimonos (1990b) to study the structure from motion problem
from line correspondences.

The three 3 × 3 matrices Gn
i , n = 1, 2, 3 are obtained from equations (5.2) and

(5.3):

G1
i =

 |ΛiΘiΓjΓk| |ΛiΘiΓjΛk| |ΛiΘiΓjΘk|
|ΛiΘiΛjΓk| |ΛiΘiΛjΛk| |ΛiΘiΛjΘk|
|ΛiΘiΘjΓk| |ΛiΘiΘjΛk| |ΛiΘiΘjΘk|

 . (5.6)

Note that equation (5.3) allows us to predict the coordinates of a line li in image
i, given two images lj and lk of an unknown 3D line in images j and k, except in two
cases where T i(lj , lk) = 0:
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Figure 4. When lj and lk are corresponding epipolar lines, the two planes PT
j lj and PT

k lk are
identical and therefore T i(lj , lk) = 0.

Figure 5. When lj and lk are epipolar lines with respect to view i, the line li is reduced to a
point, hence T i(lj , lk) = 0.

1. When the two planes determined by lj and lk are identical, i.e. when lj and lk
are corresponding epipolar lines between views j and k. This is equivalent to
saying that the 3D line L is in an epipolar plane of the camera pair (j, k). The
meet that appears in equation (5.3) is then 0 and the line li is undefined; see
figure 4. If L is not in an epipolar plane of the camera pair (i, j) then we can
use the equation:

lk ' P̃k(PT
i liMPT

j lj)

to predict lk from the images li and lj of L. If L is also in an epipolar plane
of the camera pair (i, j) it is in the trifocal plane of the three cameras and
prediction is not possible by any of the formulas, such as (5.3).

2. When lj and lk are epipolar lines between views i and j and i and k, respec-
tively. This is equivalent to saying that they are the images of the same optical
ray in view i and that li is reduced to a point (see figure 5).

Except in those two cases, we have defined an application Ti from P∗2 × P∗2, the
Cartesian product of two duals of the projective plane, into P∗2. This application is
represented by an application T i from R3 ×R3 into R3. This application is bilinear
and antisymmetric and is represented by the three matricesGn

i , n = 1, 2, 3. It is called
the trifocal tensor for view i. The properties of this application can be summarized
in the following theorem:

Theorem 5.1. The application Ti : P∗2 × P∗2 −→ P∗2 is represented by the
bilinear application T i such that T i(lj , lk) ' P̃i(PT

j lj MPT
k lk). T i has the following

properties:

1. It is equal to 0 iff

(a) lj and lk are epipolar lines with respect to the ith view, or

(b) lj and lk are corresponding epipolar lines with respect to the pair (j, k)
of cameras.
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Figure 6. A three-dimensional representation of the trifocal tensor.

2. Let lk be an epipolar line with respect to view i and li the corresponding
epipolar line in view i, then for all lines lj in view j which are not epipolar
lines with respect to view i: T i(lj , lk) ' li.

3. Similarly, let lj be an epipolar line with respect to view i and li the correspond-
ing epipolar line in view i, then for all lines lk in view k which are not epipolar
lines with respect to view i: T i(lj , lk) ' li.

4. If lj and lk are non-corresponding epipolar lines with respect to the pair (j, k)
of views, then T (lj , lk) = ti, the trifocal line of the ith view, if the optical
centres are not aligned and 0 otherwise.

Proof . We have already proved point 1. In order to prove point 2, we notice that
when lk is an epipolar line with respect to view i, the line L is contained in an epipolar
plane for the pair (i, k) of cameras. Two cases can happen. If L goes through Ci, i.e.
if lj is an epipolar line with respect to view i, then li is reduced to a point and this
is point 1(a) of the theorem. If L does not go through Ci, lj is not an epipolar line
with respect to view i and the image of L in view i is independent of its position
in the epipolar plane for the pair (i, k), it is the epipolar line li corresponding to lk.
The proof of point 3 is identical after exchanging the roles of cameras k and j.

If lj and lk are non-corresponding epipolar lines for the pair (j, k) of views, the
two planes (Cj , lj) and (Ck, lk) intersect along the line (Cj , Ck). Thus, if Ci is not
on that line, its image li in view i is indeed the trifocal line ti; see figure 2. �

A more pictorial view is shown in figure 6: the tensor is represented as a 3 × 3
cube, the three horizontal planes representing the matrices Gn

i , n = 1, 2, 3. It can be
thought of as a black box which takes as its input two lines, lj and lk and outputs a
third, li. Hartley (1994, 1997) has shown that the trifocal tensors can be very simply
parametrized by the perspective projection matrices Pn, n = 1, 2, 3 of the three
cameras. This result is summarized in the following proposition:
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Proposition 5.2 (Hartley). Let Pn, n = 1, 2, 3 be the three perspective pro-
jection matrices of three cameras in general viewing position. After a change of coor-
dinates, those matrices can be written, P1 = [I30], P2 = [Xe2,1] and P3 = [Y e3,1]
and the matrices Gn

1 can be expressed as

Gn
1 = eT

2,1Y
(n) −X(n)eT

3,1, n = 1, 2, 3, (5.7)

where the vectors X(n) and Y (n) are the column vectors of the matrices X and Y ,
respectively.

We use this proposition as a definition:

Definition 5.3. Any tensor of the form (5.7) is a trifocal tensor.

(c) A third affine digression

If the three cameras are affine, i.e. if Θi ' Θj ' Θk ' e4, then we can read from
equation (5.6) the form of the matrices Gn

i , n = 1, 2, 3.

Proposition 5.4. For affine cameras, the trifocal tensor takes the simple form:

G1
i =

|ΛiΘiΓjΓk| |ΛiΘiΓjΛk| 0
|ΛiΘiΛjΓk| |ΛiΘiΛjΛk| 0

0 0 0

 ,
G2
i =

|ΘiΓiΓjΓk| |ΘiΓiΓjΛk| 0
|ΘiΓiΛjΓk| |ΘiΓiΛjΛk| 0

0 0 0

 ,
G3
i =

 |ΓiΛiΓjΓk| |ΓiΛiΓjΛk| |ΓiΛiΓjΘk|
|ΓiΛiΛjΓk| |ΓiΛiΛjΛk| |ΓiΛiΛjΘk|
|ΓiΛiΘjΓk| |ΓiΛiΘjΛk| 0

 .
(d) Algebraic and geometric properties of the trifocal tensors

The matricesGn
i , n = 1, 2, 3 have interesting properties which are closely related to

the epipolar geometry of the views j and k. We start with the following proposition,
which was proved, for example, in Hartley (1997). The proof hopefully gives some
more geometric insight into what is going on:

Proposition 5.5 (Hartley). The matrices Gn
i are of rank 2 and their nullspaces

are the three epipolar lines, noted lnk in view k of the three projection rays of camera
i. These three lines intersect at the epipole ek,i. The corresponding lines in view i
are represented by en × ei,k and can be obtained as T i(lj , lnk ), n = 1, 2, 3 for any lj
not equal to lnj (see proposition 5.6).

Proof . The nullspace of Gn
i is the set of lines lnk such that T i(lj , lnk ) has a zero in

the nth coordinate for all lines lj . The corresponding lines li such that li = T i(lj , lnk )
all go through the point represented by en, n = 1, 2, 3 in the ith retinal plane. This
is true if and only if lnk is the image in the kth retinal plane of the projection ray
ΛiMΘi(n = 1), ΘiMΓi(n = 2) and ΓiMΛi(n = 3): lnk is an epipolar line with
respect to view i and theorem 5.1, point 2, shows that for each n the corresponding
line in view i is independent of lj . Moreover, it is represented by en × ei,k. �
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Figure 7. The lines lnj (resp. lnk ), n = 1, 2, 3 in the nullspaces of the matrices GnT
i (resp. Gn

i )
are the images of the three projection rays of camera i. Hence, they intersect at the epipole
ej,i (resp. ek,i). The corresponding epipolar lines in camera i are obtained as Ti(lnj , lk) (resp.
Ti(lj , lnk )) for lk 6= lnk (resp. lj 6= lnj ).

A similar reasoning applies to the matrices GnT
i :

Proposition 5.6 (Hartley). The nullspaces of the matrices GnT
i are the three

epipolar lines, noted lnj , n = 1, 2, 3, in the jth retinal plane of the three projection
rays of camera i. These three lines intersect at the epipole ej,i; see figure 7. The
corresponding lines in view i are represented by en × ei,j and can be obtained as
T i(lnj , lk), n = 1, 2, 3 for any lk not equal to lnk .

This provides a geometric interpretation of the matrices Gn
i : they represent map-

pings from the set of lines in view k to the set of points in view j located on the
epipolar line lnj defined in proposition 5.6. This mapping is geometrically defined by
taking the intersection of the plane defined by the optical centre of the kth camera
and any line of its retinal plane with the nth projection ray of the ith camera and
forming the image of this point in the jth camera. This point does not exist when
the plane contains the projection ray. The corresponding line in the kth retinal plane
is the epipolar line lnk defined in proposition 5.5. Moreover, the three columns of Gn

i

represent three points which all belong to the epipolar line lnj .
Similarly, the matrices GnT

i represent mappings from the set of lines in view j to
the set of points in view k located on the epipolar line lnk .

Remark 5.7. It is important to note that the rank of the matrices Gn cannot
be less than 2. Consider for example the case n = 1. We have seen in proposition
5.5 that the nullspace of G1 is the image of the projection ray ΛiMΘi in view k.
Under our general viewpoint assumption, this projection ray and the optical centre
Ck define a unique plane unless it goes through Ck, a situation that can be avoided
by a change of coordinates in the retinal plane of the ith camera. Therefore there is a
unique line in the right nullspace of G1

i and its rank is equal to 2. Similar reasonings
apply to G2

i and G3
i .

A question that will turn out to be important later is that of knowing how many
distinct lines lnk (resp. lnj ) can there be. This is described in the following proposition:
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Proposition 5.8. Under the general viewpoint assumption, the rank of the ma-
trices [l1kl

2
kl

3
k] and [l1j l

2
j l

3
j ] is 2.

Proof . We know from propositions 5.5 and 5.6 that the the ranks are less than or
equal to 2 because each triplet of lines intersect at an epipole. In order for the ranks
to be equal to 1, we would need to have only one line in either retinal plane. But this
would mean that the three planes defined by Ck (resp. Cj) and the three projection
rays of the ith camera are identical which is impossible since Ci 6= Ck (resp. Cj 6= Ck)
and the three projection rays of the ith camera are not coplanar. �

Algebraically, this implies that the three determinants det(Gn
i ), n = 1, 2, 3 are

equal to 0. Another constraint implied by proposition 5.8 is that the 3× 3 determi-
nants formed with the three vectors in the nullspaces of the Gn

i , n = 1, 2, 3 (resp. of
the GnT

i , n = 1, 2, 3) are equal to 0. It turns out that the applications T i, i = 1, 2, 3
satisfy other algebraic constraints which are also important in practice.

The question of characterizing exactly the constraints satisfied by the tensors is
of great practical importance for the problem of estimating the tensors from triplets
of line correspondences (see Faugeras & Papadopoulo 1998). To be more specific,
we know that the tensor is equivalent to the knowledge of the three perspective
projection matrices and that they depend upon 18 parameters. On the other hand
a trifocal tensor depends upon 27 parameters up to scale, i.e. 26 parameters. To be
more precise, this means that the set of trifocal tensors is a manifold of dimension
18 in the projective space of dimension 26. There must therefore exist constraints
between the coefficients that define the tensor. Our next task is to discover some of
those constraints and find subsets of them which characterize the trifocal tensors,
i.e. that guarantee that they have the form (5.7).

To simplify a bit the notations, we will assume in the sequel that i = 1, j = 2,
k = 3 and will ignore the ith index everywhere, e.g. denote T 1 by T .

We have already seen several such constraints when we studied the matrixes Gn.
Let us summarize those constraints in the following proposition:

Proposition 5.9. Under the general viewpoint assumption, the trifocal tensor T
satisfies the three constraints, called the rank constraints:

rank(Gn) = 2 =⇒ det(Gn) = 0, n = 1, 2, 3.

The trifocal tensor T satisfies the two constraints, called the epipolar constraints:

rank([l12l
2
2l

3
2]) = rank([l13l

2
3l

3
3]) = 2 =⇒ |l12l22l32| = |l13l23l33| = 0.

Those five constraints which are clearly algebraically independent since the rank
constraints say nothing about the way the kernels are related constrain the form of
the matrices Gn.

We now show that the coefficients of T satisfy nine more algebraic constraints
of degree 6 which are defined as follows. Let en, n = 1, 2, 3 be the canonical basis
of R3 and let us consider the four lines T (ek2 ,ek3), T (el2 ,ek3), T (ek2 ,el3) and
T (el2 ,el3) where the indexes k2 and l2 (resp. k3 and l3) are different. For example,
if k2 = k3 = 1 and l2 = l3 = 2, the four lines are the images in camera 1 of the four
3D lines Γ2MΓ3, Λ2MΓ3, Γ2MΛ3 and Λ2MΛ3.

These four lines can be chosen in nine different ways satisfy an algebraic constraint
which is detailed in the following theorem which is proved in Faugeras & Mourrain
(1995b).
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Theorem 5.10. The trifocal tensor T satisfies the 9 algebraic constraints of de-
gree 6, called the vertical constraints:

|T (ek2 ,ek3)T (ek2 ,el3)T (el2 ,el3)||T (ek2 ,ek3)T (el2 ,ek3)T (el2 ,el3)|
− |T (el2 ,ek3)T (ek2 ,el3)T (el2 ,el3)||T (ek2 ,ek3)T (el2 ,ek3)T (ek2 ,el3)| = 0. (5.8)

The reader can convince himself that if he takes any general set of lines, then
equation (5.8) is in general not satisfied. For instance, let li = ei, i = 1, 2, 3, 4. It is
readily verified that the left-hand side of (5.8) is equal to −2.

Referring to figure 6, what theorem 5.10 says is that if we take four vertical columns
of the trifocal cube (shown as dashed lines in the figure) arranged in such a way that
they form a prism with a square basis, then the expression (5.8) is equal to 0. This
is the reason why we call these constraints the vertical constraints in the sequel.
Representing each line as T ·k2k3 , etc., we rewrite equation (5.8) as

|T ·k2k3T ·k2l3T ·l2l3 ||T ·k2k3T ·l2k3T ·l2l3 |
− |T ·l2k3T ·k2l3T ·l2l3 ||T ·k2k3T ·l2k3T ·k2l3 | = 0. (5.9)

It turns out that the same kind of relations hold for the other two principal directions
of the cube (shown as solid lines of different widths in the same figure):

Theorem 5.11. The trifocal tensor T satisfies also the nine algebraic constraints,
called the row constraints:

|T k1·k3T k1·l3T l1·l3 ||T k1·k3T l1·k3T l1·l3 |
− |T l1·k3T k1·l3T l1·l3 ||T k1·k3T l1·k3T k1·l3 | = 0, (5.10)

and the nine algebraic constraints, called the column constraints:

|T k1k2·T k1l2·T l1l2·||T k1k2·T l1k2·T l1l2·|
− |T l1k2·T k1l2·T l1l2·||T k1k2·T l1k2·T k1l2·| = 0. (5.11)

Proof . We do the proof for the first set of constraints which concern the columns
of the matrices Gn. The proof is analogous for the other set concerning the rows.

The three columns of Gn represent three points Gnk , k = 1, 2, 3 of the epipolar
line ln2 (see the discussion after proposition 5.6). To be concrete, let us consider the
first two columns of G1 and G2, the proof is similar for the other combinations. We
consider the two sets of points defined by a2G

1
1 + b2G

1
2 and a2G

2
1 + b2G

2
2. These two

sets are in projective correspondence, the collineation being the identity. It is known
that the line joining two corresponding points envelops a conic. It is easily shown
that the determinant of the matrix defining this conic is equal to:

|T 1·1T 1·2T 2·2||T 1·1T 2·1T 2·2| − |T 2·1T 1·2T 2·2||T 1·1T 2·1T 1·2|.
In order to show that this expression is equal to 0, we show that the conic is de-
generate, containing two points. This result is readily obtained from a geometric
interpretation of what is going on.

The point a2G
1
1 + b2G

1
2 is the image by G1 of the line a2e1 + b2e2, i.e. the first set

of points is the image by G1 of the pencil of lines going through the point e3. Using
again the geometric interpretation of G1, we realize that those points are the images
in the second image of the points of intersection of the first projection ray ΛMΘ
of the first camera with the pencil of planes going through the third projection ray
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Figure 8. A plane of the pencil of axis Γ3MΛ3 intersects the plane Γ along a line going through
the point Γ MΓ3MΛ3. The points a(a2, b2) and b(a2, b2) are the images by G1 of a2G

1
1 +b2G

1
2

and a2G
2
1 + b2G

2
2, respectively.

Γ3MΛ3 of the third camera. Similarly, the second set of points is the image of the
points of intersection of the second projection ray ΘMΓ of the first camera with the
pencil of planes going through the third projection ray Γ3MΛ3 of the third camera.

The lines joining two corresponding points of those two sets are thus the images
of the lines joining the two points of intersection of a plane containing the third
projection ray Γ3MΛ3 of the third camera with the first and the second projection
rays, ΛMΘ and ΘMΓ , of the first camera. This line lies in the third projection
plane Θ of the first camera and in the plane Π of the pencil. Therefore it goes
through the point of intersection of the third projection plane Θ of the first camera
and the third projection ray Θ′MΓ3 of the third camera; see figure 8. In image 2, all
the lines going through two corresponding points go through the image of that point.
A special case occurs when the plane Π goes through the first optical centre, the
two points are identical to the epipole e2,1 and the line joining them is not defined.
Therefore the conic is reduced to the two points e2,1 and the point of intersection of
the two lines (G1

1, G
2
1) and (G1

2, G
2
2). This point is the image in the second camera

of the point of intersection Γ MΓ3MΛ3 of the first projection plane, Γ , of the first
camera with the third projection ray, Γ3MΛ3, of the third camera. �

The theorem draws our attention to three sets of three points, i.e. three trian-
gles, which have some very interesting properties. The triangle that came up in the
proof is the one whose vertexes are the images of the points A1 = Γ MΛ3MΘ3,
B1 = Γ MΘ3MΓ3 and D1 = Γ MΓ3MΛ3. The other two triangles are those whose
vertexes are the images of the points A2 = ΛMΛ3MΘ3, B2 = ΛMΘ3MΓ3, D2 =
ΛMΓ3MΛ3 on one hand, and A3 = ΘMΛ3MΘ3, B3 = ΘMΘ3MΓ3, D3 =
ΘMΓ3MΛ3 on the other.

Note that the three sets of vertexes A1, A2, A3, B1, B2, B3 and D1, D2, D3, are
aligned on the three projection rays of the third camera and therefore their images are
also aligned, the three lines l21 = (a1, a2, a3), l22 = (b1, b2, b3) and l23 = (d1, d2, d3)
converging to the epipole e2,3; see figure 9. The corresponding epipolar lines in image
3 are represented by l3i = e3,2 × ei, i = 1, 2, 3, respectively. Note that all points ai,
bi, di, i = 1, 2, 3 can be expressed as simple functions of the columns of the matrixes
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Figure 9. The three triangles have corresponding vertexes aligned on epipolar lines for the pair
(2, 3) of images.

Gn. For example,
a1 = (G1

1 ×G2
1)× (G1

2 ×G2
2).

The same is true of the constraints on the rows of the matrices Gn. More specifi-
cally the constraints (5.11) introduce nine other points (Hi,Ki,Mi), i = 1, 2, 3 with
H1 = Γ MΛ′MΘ′, K1 = Γ MΘ′MΓ ′, M1 = Γ MΓ ′MΛ′, H2 = ΛMΛ′MΘ′,
K2 = ΛMΘ′MΓ ′, M2 = ΛMΓ ′MΛ′, and H3 = ΘMΛ′MΘ′, K3 = ΘMΘ′MΓ ′,
M3 = ΘMΓ ′MΛ′. The three sets of points H1, H2, H3, K1, K2, K3 and M1, M2,
M3 are aligned on the three projection rays of the second camera and therefore
their images are also aligned, the three lines l′31 = (h1, h2, h3), l′32 = (k1, k2, k3) and
l′33 = (m1,m2,m3) converging to the epipole e3,2. The corresponding epipolar lines,
l′2i, i = 1, 2, 3 in image 3 are represented by e2,3 × ei, i = 1, 2, 3, respectively.

Note that this yields a way of recovering the fundamental matrix F23, since we
obtain the two epipoles e2,3 and e3,2 and three pairs of corresponding epipolar lines, in
fact six pairs. We will not address further here the problem of recovering the epipolar
geometry of the three views, let us simply mention the fact that the fundamental
matrices which are recovered from the trifocal tensor are compatible in the sense
that they satisfy the constraints (5.1). There is a further set of constraints that are
satisfied by any trifocal tensor and are also of interest. They are described in the
next proposition:

Proposition 5.12. The trifocal tensor T satisfies the 10 algebraic constraints,
called the extended rank constraints:

rank
( 3∑
n=1

λnG
n

)
6 2 ∀λn, n = 1, 2, 3.
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Proof . The proof can be done either algebraically or geometrically. The algebraic
proof simply uses the parametrization (5.7) and verifies that the constraints described
in proposition 5.13 are satisfied. In the geometric proof one notices that for fixed
values (not all zero) of the λns, and for a given line l3 in view 3, the point which is
the image in view 2 of line l3 by

∑3
n=1 λnG

n is the image of the point defined by

λ1PT
3 l3M(ΛMΘ) + λ2PT

3 l3M(ΘMΓ ) + λ3PT
3 l3M(Γ MΛ).

This expression can be rewritten as

PT
3 l3M(λ1ΛMΘ + λ2ΘMΓ + λ3Γ MΛ). (5.12)

The line λ1ΛMΘ+λ2ΘMΓ +λ3Γ MΛ is an optical ray of the first camera (propo-
sition 3.3), and when l3 varies in view 3, the point defined by (5.12) is well defined
except when l3 is the image of that line in view 3. In that case the meet in (5.12) is
zero and the image of that line is in the nullspace of

∑3
n=1 λnG

n. �

Note that the proposition 5.12 is equivalent to the vanishing of the 10 coefficients
of the homogeneous polynomial of degree 3 in the three variables λn, n = 1, 2, 3
equal to det(

∑3
n=1 λnG

n). The coefficients of the terms λ3
n, n = 1, 2, 3 are the

determinants det(Gn), n = 1, 2, 3. Therefore the extended rank constraints contain
the rank constraints.

To be complete, we give the expressions of the seven extended rank constraints
which are different from the three rank constraints:

Proposition 5.13. The seven extended rank constraints are given by

λ2
1λ2 |G1

1G
1
2G

2
3|+ |G1

1G
2
2G

1
3|+ |G2

1G
1
2G

1
3| = 0, (5.13)

λ2
1λ3 |G1

1G
1
2G

3
3|+ |G1

1G
3
2G

1
3|+ |G3

1G
1
2G

1
3| = 0, (5.14)

λ2
2λ1 |G2

1G
2
2G

1
3|+ |G2

1G
1
2G

2
3|+ |G1

1G
2
2G

2
3| = 0, (5.15)

λ2
2λ3 |G2

1G
2
2G

3
3|+ |G2

1G
3
2G

2
3|+ |G3

1G
2
2G

2
3| = 0, (5.16)

λ2
3λ1 |G3

1G
3
2G

1
3|+ |G3

1G
1
2G

3
3|+ |G1

1G
3
2G

3
3| = 0, (5.17)

λ2
3λ2 |G3

1G
3
2G

2
3|+ |G3

1G
2
2G

3
3|+ |G2

1G
3
2G

3
3| = 0, (5.18)

λ1λ2λ3 |G1
1G

2
2G

3
3|+ |G1

1G
3
2G

2
3|+ |G2

1G
1
2G

3
3|

+|G2
1G

3
2G

1
3|+ |G3

1G
1
2G

2
3|+ |G3

1G
2
2G

1
3| = 0. (5.19)

(e) Constraints that characterize the tensor

We now show two results which are related to the question of finding subsets of
constraints which are sufficient to characterize the trifocal tensors. These subsets are
the implicit equations of the manifold of the trifocal tensors. The first result is given
in the following theorem:

Theorem 5.14. Let T be a bilinear mapping from P∗2 × P∗2 to P∗2 which sat-
isfies the 14 rank, epipolar and vertical constraints. Then this mapping is a trifocal
tensor, i.e. it satisfies definition 5.3. Those 14 algebraic equations are a set of implicit
equations of the manifold of trifocal tensors.

The second result is that the 10 extended constraints and the epipolar constraints
characterize the trifocal tensors:
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Theorem 5.15. Let T be a bilinear mapping from P∗2×P∗2 to P∗2 which satisfies
the 12 extended rank and epipolar constraints. Then this mapping is a trifocal tensor,
i.e. it satisfies definition 5.3. Those 12 algebraic equations are another set of implicit
equations of the manifold of trifocal tensors.

The proof of those theorems will take us some time. We start with a proposition
we will use to prove that the three rank constraints and the two epipolar constraints
are not sufficient to characterize the set of trifocal tensors:

Proposition 5.16. If a tensor T satisfies the three rank constraints and the two
epipolar constraints, then its matrices Gn, n = 1, 2, 3 can be written:

Gn = anX
(n)Y (n)T +X(n)eT

3,1 + e2,1Y
(n)T, (5.20)

where e2,1 (resp. e3,1) is a fixed point of image 2 (resp. of image 3), the three vectors
X(n) represent three points of image 2, and the three vectors Y (n) represent three
points of image 3.

Proof . The rank constraints allow us to write:

Gn = X
(n)
1 Y

(n)T
1 +X(n)

2 Y
(n)T

2 , (5.21)

where the six vectors X(n)
1 , X(n)

2 , n = 1, 2, 3 represent six points of the second image
and the six vectors Y (n)

1 , Y (n)
2 , n = 1, 2, 3 represent six points of the third image.

The right nullspace ofGn is simply the cross-productX(n)
1 ×X(n)

2 , the left nullspace
being Y (n)

1 × Y (n)
2 . Those two sets of three nullspaces are of rank 2 (proposition 5.9).

Let us consider the first set. We can write the corresponding matrix as

[X(1)
1 ×X(1)

2 X
(2)
1 ×X(2)

2 X
(3)
1 ×X(3)

2 ] = Z1T
T
1 +Z2T

T
2 .

With obvious notations, we have in particular

X
(1)
1 ×X(1)

2 = T11Z1 + T21Z2.

Let us now interpret this equation geometrically: the line represented by the vector
X

(1)
1 ×X(1)

2 , i.e. the line going through the pointsX(1)
1 andX(1)

2 belongs to the pencil
of lines defined by the two lines represented by the vectors Z1 and Z2. Therefore it
goes through their point of intersection represented by the cross-product Z1 × Z2
and we write X(1)

2 as a linear combination of X(1)
1 and Z1 ×Z2:

X
(1)
2 = α1X

(1)
1 + β1Z1 ×Z2.

We write e2,1 for Z1 ×Z2 and note that our reasoning is valid for X(n)
1 and X

(n)
2 :

X
(n)
2 = αnX

(n)
1 + βne2,1, n = 1, 2, 3.

The same exact reasoning can be applied to the pairs Y (n)
1 , Y (n)

2 , n = 1, 2, 3 yielding
the expression:

Y
(n)

1 = γnY
(n)

2 + δne3,1.

We have exchanged the roles of Y (n)
1 and Y

(n)
2 for reasons of symmetry in the final

expression of Gn. Replacing X(n)
2 and Y (n)

1 by their values in the definition (5.21)
of the matrix Gn, we obtain

Gn = (αn + γn)X(n)
1 Y

(n)T
2 + δnX

(n)
1 eT

3,1 + βne2,1Y
(n)T

2 .

We can absorb the coefficients δn in X(n)
1 , the coefficients βn in Y (n)

2 and we obtain
the announced relation. �
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The next proposition is a proof of theorem 5.14 that the 14 rank and epipolar
constraints characterize the set of trifocal tensors:

Proposition 5.17. Let T be a bilinear mapping from P∗2 × P∗2 to P∗2 which
satisfies the 14 rank, epipolar and vertical constraints. Then its matrices Gn take
the form:

Gn = e2,1Y
(n)T +X(n)eT

3,1. (5.22)

Proof . In order to show this, we show that the nine vertical constraints imply that
T (l21, l31) = 0 for all pair of epipolar lines (l21, l31), i.e. for all pairs of lines such that
l21 contains the point e2,1 and l31 contains the point e3,1 defined in (5.8). Indeed,
this implies that an(lT21X

(n)) · (Y (n)Tl31) = 0 for all pairs of epipolar lines (l21, l31)
which implies an = 0 unless either X(n) is identical to e2,1 or Y (n) is identical to e3,1
which contradicts the hypothesis that the rank of Gn is two.

In order to show this it is sufficient to show that each of the nine constraints
implies that T (l21i, l31j) = 0, i, j = 1, 2, 3 where l21i (resp. l31j) is an epipolar line
for the pair (1, 2) (resp. the pair (1, 3)) of cameras, going the ith (resp. the jth) point
of the canonical basis. This is sufficient because we can assume that, for example,
e2,1 does not belong to the line represented by e3. In that case, any epipolar line l21
can be represented as a linear combination of l211 and l212:

l21 = α2l211 + β2l212.

Similarly, any epipolar line l31 can be represented as a linear combination of l311 and
l312, given that e3,1 does not belong to the line represented by e3:

l31 = α3l311 + β3l312.

The bilinearity of T allows us to conclude that T (l21, l31) = 0.
To simplify the notations we define

λ1 = T (ek2 ,ek3), λ2 = T (el2 ,ek3),
λ3 = T (ek2 ,el3), λ4 = T (el2 ,el3).

To help the reader follow the proof, we encourage him or her to take the example
k2 = k3 = 1 and l2 = l3 = 2. If the tensor T were a trifocal tensor, the four lines λ1,
λ2, λ3, λ4 would be the images of the 3D lines Γ ′MΓ3, Λ′MΓ3, Γ ′MΛ3, Λ′MΛ3,
respectively.

We now consider the two lines d1 and d2 in image 1 which are defined as follows.
d1 goes through the point of intersection of λ1 and λ2 (the image of the point
Γ ′MΛ′MΓ3) and the point of intersection of the lines λ3 and λ4 (the image of the
point Γ ′MΛ′MΛ3). In our example, d1 is the image of the projection ray Γ ′MΛ′.
d2, on the other hand, goes through the point of intersection of λ2 and λ4 (the image
of the point Λ′MΓ3MΛ3) and the point of intersection of λ1 and λ3 (the image of the
point Γ ′MΓ3MΛ3). In our example, d2 is the image of the projection ray Γ3MΛ3.
Using elementary geometry, it is easy to find

d1 = |λ2λ3λ4|λ1 − |λ1λ3λ4|λ2,

d2 = |λ1λ3λ4|λ2 + |λ1λ2λ3|λ4.

According to the definition of the lines λ1, λ2, λ3, λ4, d1 is the image by T of the
two lines (|λ2λ3λ4|ek2 − |λ1λ3λ4|el2 ,ek3) and d2 the image by T of the two lines
(el2 , |λ1λ3λ4|ek3 + |λ1λ2λ3|el3).
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We now proceed to show that

T (|λ2λ3λ4|ek2 − |λ1λ3λ4|el2 , |λ1λ3λ4|ek3 + |λ1λ2λ3|el3) = 0.

Using the bilinearity of T , we have

T (|λ2λ3λ4|ek2 − |λ1λ3λ4|el2 , |λ1λ3λ4|ek3 + |λ1λ2λ3|el3)
= |λ2λ3λ4||λ1λ3λ4|T (ek2 ,ek3) + |λ2λ3λ4||λ1λ2λ3|T (ek2 ,el3)

− |λ1λ3λ4||λ1λ3λ4|T (el2 ,ek3)− |λ1λ3λ4||λ1λ2λ3|T (el2 ,el3).

We now use the constraint (5.8):

|λ1λ3λ4||λ1λ2λ4| − |λ2λ3λ4||λ1λ2λ3|,
to replace the coefficient of the second term by |λ1λ3λ4||λ1λ2λ4|. The coefficient
|λ1λ3λ4| is a factor and we have

T (|λ2λ3λ4|ek2 − |λ1λ3λ4|el2 , |λ1λ3λ4|ek3 + |λ1λ2λ3|el3)
= |λ1λ3λ4|(|λ2λ3λ4|λ1 − |λ1λ3λ4|λ2 + |λ1λ2λ4|λ3 − |λ1λ2λ3|λ4).

The second factor is seen to be equal to 0 because of Cramer’s relation.
We therefore have two sets of three lines, one in image 2 noted l21i, i = 1, 2, 3,

one in image 3 noted l31j , j = 1, 2, 3, corresponding to the choices of k2, l2, k3, l3
and such that T (l21i,131j) = 0, i, j = 1, 2, 3. For example, one of the lines l21i is
represented by |λ2λ3λ4|ek2 − |λ1λ3λ4|el2 and one of the lines l31j is represented by
|λ1λ3λ4|ek3 + |λ1λ2λ3|el3 .

Let us see what this means in terms of the linear applications defined by the
matrices Gn. Consider the first line in image 3, l311 its image by Gn, n = 1, 2, 3 is a
point on the line ln2 , n = 1, 2, 3. According to what we have just proved, those three
points are also on the three lines l21i, i = 1, 2, 3; see figure 10. This is only possible if
(a) the three lines l21i, i = 1, 2, 3 are identical, which they are not in general, or if (b)
the three points are identical and the three lines go through that point. The second
possibility is the correct one and implies that (a) the three points are identical with
the point of intersection, e2,1, of the three lines ln2 , n = 1, 2, 3 and (b) that the three
lines l21i, i = 1, 2, 3 go through e2,1. A similar reasoning shows that the three lines
l31j , j = 1, 2, 3 go through the epipole e3,1.

This completes the proof of the proposition and of theorem 5.14. �

An intriguing question is whether there are other sets of constraints that imply this
parametrization, or in other words does there exist simpler implicit parametrization
of the manifold of trifocal tensors? One answer is contained in theorem 5.15. Before
we prove it we prove two interesting results, the first one is unrelated, the second is

Proposition 5.18. Any bilinear mapping T which satisfies the 14 rank, epipolar
and vertical constraints also satisfies the 18 row and columns constraints.

Proof . The proof consists in noticing that if T satisfies the rank, epipolar and ver-
tical constraints, according to proposition 5.17, it satisfies definition 5.3 and there-
fore, according to theorem 5.11, it satisfies the row and column constraints. �

The reader may wonder about the 10 extended rank constraints. Are they sufficient
to characterize the trilinear tensor? The following proposition answers this question
negatively.
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Proposition 5.19. The 10 extended rank constraints do not imply the epipolar
constraints.

Proof . The proof consists in exhibiting a counterexample. The reader can verify
that the tensor T defined by

G1 =

 0 0 0
−1 −1 0
1 0 1

 , G2 =

−1 −1 0
0 0 0
0 1 0

 , G3 =

−1 0 −1
0 1 0
0 0 0


satisfies the 10 extended rank constraints and that the corresponding three left
nullspaces are the canonic lines represented by en, n = 1, 2, 3 which do not sat-
isfy one of the epipolar constraints. �

Before we prove theorem 5.15 we prove the following proposition:

Proposition 5.20. The three rank constraints and the two epipolar constraints
do not characterize the set of trifocal tensors.

Proof . Indeed, proposition 5.16 gives us a parametrization of the matrices Gn in
that case. It can be verified that for such a paramerization, the vertical constraints
are not satisfied. Assume now that the rank and epipolar constraints imply that the
tensor is a trifocal tensor, then, according to proposition 5.10, it satisfies the vertical
constraints, a contradiction. �

We are now ready to prove theorem 5.15:

Proof . The proof consists in showing that any bilinear application T that satisfies
the five rank and epipolar constraints, i.e. whose matrices Gn can be written as
in (5.20) and the remaining seven extended rank constraints (5.13)–(5.19) can be
written as in (5.22), i.e. is such that an = 0, n = 1, 2, 3.

If we use the parametrization (5.20) and evaluate the constraints (5.13)–(5.18), we
find

−a2|e2,1X
(1)X(2)||e3,1Y

(1)Y (2)|, (5.23)

−a3|e2,1X
(1)X(3)||e3,1Y

(1)Y (3)|, (5.24)

−a1|e2,1X
(1)X(2)||e3,1Y

(1)Y (2)|, (5.25)

−a3|e2,1X
(2)X(3)||e3,1Y

(2)Y (3)|, (5.26)

−a1|e2,1X
(1)X(3)||e3,1Y

(1)Y (3)|, (5.27)

−a2|e2,1X
(2)X(3)||e3,1Y

(2)Y (3)|. (5.28)

In those formulas, our attention is drawn to determinants of the form |e2,1X
(i)X(j)|,

i 6= j (type 2) and |e3,1Y
(i)Y (j)|, i 6= j (type 3). The nullity of a determinant of the

first type implies that the epipole e2,1 (resp. e3,1) is on the line defined by the two
points X(i), X(j) (resp. Y (i), Y (j)), if the corresponding points are distinct.

If all determinants are non-zero, the constraints (5.23)–(5.28) imply that all ans
are zero. Things are slightly more complicated if some of the determinants are equal
to 0.

We prove that if the matrices Gn are of rank 2, no more than one of the three
determinants of each of the two types can equal 0. We consider several cases. The

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1148 O. Faugeras and T. Papadopoulo

Figure 10. The three lines l21i, i = 1, 2, 3 are identical, see the proof of proposition 5.17.

first case is when all points of one type are different. Suppose first that the three
points represented by the three vectors X(n) are not aligned. Then, having two of
the determinants of type 2 equal to 0 implies that the point e2,1 is identical to one
of the points X(n) since it is at the intersection of two of the lines they define. But,
according to equation (5.20), this implies that the corresponding matrix Gn is of
rank 1, contradicting the hypothesis that this rank is 2. Similarly, if the three points
X(n) are aligned, if one determinant is equal to 0, the epipole e2,1 belongs to the
line (X(1), X(2), X(3)) which means that the three epipolar lines l12, l

2
2, l

3
2 are identical

contradicting the hypothesis that they form a matrix of rank 2. Therefore, in this
case, all three determinants are non-null.

The second case is when two of the points are equal, e.g. X(1) ' X(2). The
third point must then be different, otherwise we would only have one epipolar line
contradicting the rank 2 assumption on those epipolar lines, and, if it is different, the
epipole e2,1 must not be on the line defined by the two points for the same reason.
Therefore in this case also at most one of the determinants is equal to 0.

Having at most one determinant of type 2 and one of type 3 equal to 0 implies that
at least two of the an are 0. This is seen by inspecting the constraints (5.23)–(5.28).
If we now express the seventh constraint:

a1a2a3|Y (1)Y (2)Y (3)||X(1)X(2)X(3)|
− (|e2,1X

(1)X(2)||e3,1Y
(1)Y (3)|+ |e3,1Y

(1)Y (2)||e2,1X
(1)X(3)|)a1

+ (|e3,1Y
(1)Y (2)||e2,1X

(2)X(3)|+ |e3,1Y
(2)Y (3)||e2,1X

(1)X(2)|)a2

− (|e2,1X
(2)X(3)||e3,1Y

(1)Y (3)|+ |e3,1Y
(2)Y (3)||e2,1X

(1),X(3)|)a3

+ (|e2,1X
(1)X(2)||Y (1)Y (2)Y (3)|+ |e3,1Y

(1)Y (2)||X(1)X(2)X(3)|)a1a2

+ (|e3,1Y
(2)Y (3)||X(1)X(2)X(3)|+ |e2,1X

(2)X(3)||Y (1)Y (2)Y (3)|)a2a3

− (|e2,1X
(1)X(3)||Y (1)Y (2)Y (3)|+ |X(1)X(2)X(3)||e3,1Y

(1)Y (3)|)a1a3,

we find that it is equal to the third an multiplied by two of the non-zero determinants,
implying that the third an is null and completing the proof.

Let us give a few examples of the various cases. Let us assume first that

|e2,1X
(1)X(2)| = |e3,1Y

(1)Y (2)| = 0.

We find that the constraints (5.27), (5.28) and (5.26) imply a1 = a2 = a3 = 0. The
second situation occurs if we assume, for example, |e2,1X

(1)X(2)| = |e3,1Y
(1)Y (3)| =

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Grassmann–Cayley algebra for modelling cameras 1149

0. We find that the constraints (5.28) and (5.26) imply a2 = a3 = 0. The constraint
(5.19) takes then the form:

−|e2,1X
(1)X(3)||e3,1Y

(1)Y (2)|a1,

and implies a1 = 0. �

Note that from a practical standpoint, theorem 5.15 provides a simple set of suf-
ficient constraints than theorem 5.14. The 10 extended constraints are of degree 3
in the elements of T whereas the nine vertical constraints are of degree 6 as are the
two epipolar constraints.

This situation is more or less similar to the one with the E-matrix (Longuet-
Higgins 1981). It has been shown in several places (e.g. Faugeras 1993, propositions
7.2 and 7.3) that the set of real E-matrices is characterized either by the two equa-
tions:

det(E) = 0, 1
2 Tr2(EET)− Tr((EET)2) = 0,

or by the nine equations:
1
2 Tr(EET)E −EETE = 0.

In a somewhat analogous way, the set of trifocal tensors is characterized either by
the 14 rank, epipolar and vertical constraints (theorem 5.14) or by the 12 extended
rank and epipolar constraints (theorem 5.15).

6. Conclusion

We have shown a variety of applications of the Grassmann–Cayley or double alge-
bra to the problem of modelling systems of up to three pinhole cameras. We have
analysed in detail the algebraic constraints satisfied by the trilinear tensors which
characterize the geometry of three views. In particular, we have isolated two subsets
of those constraints that are sufficient to guarantee that a tensor that satisfies them
arises from the geometry of three cameras. Each of those subsets is a set of implicit
equations for the manifold of trifocal tensors. We have shown elsewhere (Faugeras &
Papadopoulo 1998) how to use some of those equations to parametrize the tensors
and estimate them from line correspondences in three views.

This work was partly supported by the EEC under the reactive LTR project 21914-CUMULI.
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Discussion

W. Triggs (INRIA, France). This is a very nice approach to the trifocal tensor.
However, although we have the rank 2 constraint on each matrix Gn, we also have
the rank 2 constraint on any linear combination of the three matrices. This therefore
gives 10 constraints none of which contain the epipoles, which are third order and
are therefore simpler to use than those Dr Faugeras gave.
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O. Faugeras. Theorems 5.14 and 5.15 in the paper give two sets of algebraic re-
lations that are sufficient for a tensor to be a trifocal tensor. The second set is
somewhat simpler than the first. The difficulty is to prove sufficiency. This is done
in the paper.

W. Triggs. How does one deal with quadrics in the Grassmann–Cayley algebra?

O. Faugeras. The Grassmann–Cayley algebra is a way to deal algebraically with
such operations as sums and intersections of vector subspaces of a vector space. Thus,
quadrics apparently do not fall immediately in that framework. But since they are
ruled surfaces, the Grassmann–Cayley algebra can in fact be very elegantly used to
describe families of lines of which quadrics are a special case.

T. Vieville (INRIA, France). How automatically can we derive the minimal para-
metrization of T? Can one program an automatic derivation of the parametrization?
In other words, can stupid people also use the Grassmann–Cayley algebra to do
vision?

O. Faugeras. Yes, of course, one can compute the parametrization automatically
just as one can for the fundamental matrix.

J. Lasenby (Department of Engineering, University of Cambridge, UK ). Is it easy
to use the Grassmann–Cayley algebra and Dr Faugeras’s system to extract all the
epipoles from a given set of 27 numbers which make up some trilinear tensor?

O. Faugeras. Two of the three fundamental matrices are obtained in a straight-
forward fashion from the left and right nullspaces of the matrices Gn, n = 1, 2, 3
(propositions 5.5 and 5.6). Recovering the third fundamental matrix can be done as
explained at the end of theorem 5.11.

J. Lasenby. Is it possible for to expand the Grassmann–Cayley algebra to cover
things other than projective geometry?

O. Faugeras. Dr Lasenby probably knows more about this than I do! Yes, we can
of course look at including the rigid motion group but here I was focusing on the
projective geometry approach which we have found to be quite useful. The way to
include the group of rigid motions is to go to Clifford algebras which are ‘deforma-
tions’ of exterior algebras. The best known example are the quaternions and the dual
quaternions which can be efficiently used to represent the set of rigid displacements
of a three-dimensional Euclidean affine space.

J. Lasenby. Are the reconstructions all based on a nonlinear estimation of T?

O. Faugeras. Yes of course. But we have developed in my group a large software
system which can use F or T to perform 3D reconstruction and can switch between
the two. The estimation of T is nonlinear as a linear estimation is highly non-robust
to noise since it neglects the nonlinear constraints.

R. I. Hartley (GE Corporate Research and Development, Niskayuna, NY, USA).
Once the inverse problem satisfies these constraints, it is then a trifocal tensor. Is
that a different concept from just saying that the set of constraints is a complete set
of constraints, a generator for the complete ideal?

O. Faugeras. No, it is the same concept. The problem that I have been addressing
is that of finding a good compromise between the number of generators of the ideal
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and their simplicity (i.e. their degree). From that standpoint the result of theorem
5.15 is better than the result of theorem 5.14.

R. I. Hartley. Wouldn’t the thing then be something like just a complete polyno-
mial modulo this ideal?

O. Faugeras. Well, the ideal we have not been able to compute, actually, if that is
the question. This means precisely that we have not been able to compute a Gröbner
basis. Because, simply there are too many variables and so on and so forth. Even
Macaulay (a symbolic algebra package) couldn’t do it for us.

R. I. Hartley. What I’m saying is, if you had the ideal, then essentially you have
the trifocal tensor, you have something which is therefore almost by definition the
trifocal tensor. I’m being very vague.

O. Faugeras. As I said before, we did not know the ideal, i.e. we did not have
either a set of generators or a Gröbner basis. One of the contributions of the paper
is to give, in theorems 5.14 and 5.15, two different sets of generators.

W. Triggs. Locally, at least the construction that I had with the 10 cubic con-
straints; if you look at the Jacobian of that, it’s guaranteed that you remove eight of
the degrees of freedom, so you get down to the 18 that we know the trifocal tensor
has. So, locally you know that those constraints are sufficient, at least locally and
generically. That does not mean that there may not be some other tensor somewhere
else in the space which satisfies those constraints but which are not the trifocal
tensor.

O. Faugeras. As proved in the paper in proposition 5.19, the 10 cubic contraints are
not sufficient (they generate a larger ideal). You need to add something, for example
the two epipolar constraints (theorem 5.15).

It seems that the manifold of trifocal tensors has at least two components, the
one for the generic configuration when the three optical centres are not aligned, and
another one, smaller, when they are aligned. This is a conjecture.
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